
SOFTWARE QUALITY ASSURANCE

Lecture 8Lecture 8

Instructor: Mr. Natash Ali Mian

Department of CS and ITDepartment of CS and IT
The University of Lahore

`

Switch off mobile phones during
lectures or put them into silent modelectures, or put them into silent mode

TERM PAPER

| Finalize Group Members 26-Feb-2013
| Finalize Topic 12-Mar-2013
| Search Papers and Sort Selected (TODAY) 20-Mar-2013
| Go Through the Abstract and Introduction of Selected Papers 27-Mar-2013

| Submit a Summary and Comments on related papers 09-Apr-2013
| Present Your Work till Today 09-Apr-2013
| Submit Initial Draft 30-Apr-2013
| Final Paper Submission 21-May-2013
| Feedback on Final Submission + Plagiarism Report 28-May-2013
| Final Presentation 4 June 2013| Final Presentation 4-June-2013

Please note that Every Phase has Marks

P t W kPresent your Work

☺☺☺

SURPRISE PRESENTATION

Present your Topic Present your Topic
Steps

| Introduce your self (Your Group)
| Your Topic
| An 2-3min extract of all the papers you have studied
| What are your findings till today?| What are your findings till today?
| Have you finalized your Objectives?

CONTENTS

| Design process and software quality assurance
| Programming and Software Quality

DESIGN?
| Synonyms: plan, arrangement, lay out, map, y y p , g , y , p,

scheme
| Antonyms: accident, fluke, chance, guess
| Design is an activity of creating a solution that | Design is an activity of creating a solution that

satisfies a specific goal or need
| Design is the backbone of all products and

iservices
| Considered an artistic and heuristic activity

8

SOFTWARE DESIGN - 1
| Software design is an artifact that represents a g p

solution, showing its main features and behavior,
and is the basis for implementing a program or
collection of programscollection of programs

| Design is a meaningful representation of | Design is a meaningful representation of
something that is to be built. It can be traced to
a customer’s requirements and at the same time
assessed for quality against a set of pre defined assessed for quality against a set of pre-defined
criteria of “good” design

9

AN IMPORTANT POINT

| Try to associate quality attributes with every y q y y
aspect of software design

10

DESIGN AND QUALITY

| Design provides us with representation of
software which can be assessed for quality

| Design is the only way that we can accurately
translate a customer’s requirements into a
fi i h d ft d t tfinished software product or system

11

WITHOUT SOFTWARE DESIGN

| We risk building an unstable systemg y
one that will fail when small changes are made
one that may be difficult to test

 h lit t b d til l t i th one whose quality cannot be assessed until late in the
software process
one that will be of no or very little use for similar
projects (not reusable)

12

DESIGN PROCESS AND MODEL
Software design is both a process and a model

13

DESIGN PROCESS

| It is a sequence of steps that enables a | It is a sequence of steps that enables a
designer to describe all aspects of the
software to be built

|During the design process, the quality of
the evolving design is assessed with a
series of formal technical reviews or
design walkthroughs
N d i kill i |Needs creative skills, past experience,
sense of what makes “good” software, and
an overall commitment to quality

14

an overall commitment to quality

DESIGN MODEL

| Equivalent to an architect’s plan for a houseq p
| Represents the totality of the thing to be built
| Provides a variety of different views of the

computer software

15

DESIGN DEFECTS

16

DESIGN DEFECTS - 1

| Defects introduced during preliminary design
phase are usually not discovered until integration
t ti hi h i t l t i t testing, which is too late in most cases

| Defects introduced during detailed design phase | Defects introduced during detailed design phase
are usually discovered during unit testing

17

DESIGN DEFECTS - 2
| All four categories of defects are found in design g g

models
Errors of commission
E f i iErrors of omission
Errors of clarity and ambiguity
Errors of speed and capacity

18

DESIGN DEFECTS - 3
| Most common defects are errors of omission, ,

followed by errors of commission
| Errors of clarity and ambiguity are also common,

d f l t d bl and many performance related problems
originate in design process also

19

DESIGN DEFECTS - 4

| Overall design ranks next to requirements as a
source of very troublesome and expensive errors

| A combination of defect prevention and defect
removal is needed for dealing with design defectsremoval is needed for dealing with design defects

20

DESIGN DEFECTS - 5

| Formal design inspections are one of the most
powerful and successful software quality

h f ll tiapproaches of all times

| Software professionals should incorporate | Software professionals should incorporate
inspections in their software development process

21

DEFECTS IN FUNDAMENTAL
D TDESIGN TOPICS

|Functions performed|Functions performed
|Function invocation, control, and

termination
|Data elements
|Data relationships|Data relationships
|Structure of the application
|Sequences or concurrency of execution|Sequences or concurrency of execution
| Interfaces

22

FUNCTIONS PERFORMED

| Errors in descriptions of functions the application
will perform, are often errors of omission

| Often omitted functions are those which, are
implied functions rather than the explicitly implied functions, rather than the explicitly
demanded functions

23

FUNCTION INVOCATION, CONTROL, AND
TERMINATION

| Defects in
information on how t start-up a feature
control its behavior

f l t ff f t h fi i h d safely turn off a feature when finished
| are common in commercial and in-house software

applicationspp

| Fifty percent of the problems reported to
commercial software vendors are of this class

24

DATA ELEMENTS

|Errors in describing the data used by the |Errors in describing the data used by the
application are a major source of problems
downstream during coding and testing

|A minor example of errors due to
inadequate design of data elements can be
seen in many programs that record
addresses and telephone numbers
Of i ffi i i d f |Often insufficient space is reserved for
names, etc.

25

DATA RELATIONSHIPS

| Errors in describing data relationships are very g p y
common and a source of much trouble later

26

STRUCTURE OF THE APPLICATION

|Complex software structures with C p
convoluted control flow tend to have
higher error rates
P l d i i f i l |Poor structural design is fairly common,
and is often due to haste or poor training
and preparationand preparation

|Tools can measure cyclomatic and
essential complexity

|Prevention is often better than attempting
to simplify an already complex software
structure

27

structure

SEQUENCES OR CONCURRENCY OF
EXECUTION

| Many errors of speed and capacity have their y p p y
origin in failing to design for optimum
performance

| Performance errors are a result of complex | Performance errors are a result of complex
control flow, excessive branching, or too many
sequential processing (use parallel processing)

| Minimize I/O operations| Minimize I/O operations

28

INTERFACES

| Chronic design problemg p
| Incompatible data types in message

communication

29

ERRORS IN EIGHT SECONDARY DESIGN
TOPICS

|Security|Security
|Reliability
|Maintainability|Maintainability
|Performance
|Human factors|Human factors
|Hardware dependencies
|Software dependencies|Software dependencies
|Packaging

30

ADDRESSING DESIGN PROBLEMS

| Continuously evaluate your design model and y y g
design process

| Use design inspections or formal technical
reviews which have proven to be the most reviews, which have proven to be the most
valuable mechanism to improve quality of
software ever, and especially for design

| Develop software design by following design | Develop software design by following design
principles and guidelines

31

DESIGN PROCESS

32

DESIGN PROCESS

| The design process produces g p p
a data design
an architectural design

 i t f d ian interface design
a component design

33

DATA DESIGN

| The data design transforms the information g
domain model created during analysis into the
data structures that will be required to
implement the softwareimplement the software

34

ARCHITECTURAL DESIGN

| It defines the relationship between major p j
structural elements of the software.
Architectural design representation is derived
from system specification analysis model and from system specification, analysis model, and
interaction of subsystems

35

INTERFACE DESIGN

| Interface design describes how the software g
communicates within itself, with systems that
interoperate with it, and with humans who use it.
An interface implies a flow of informationAn interface implies a flow of information

36

COMPONENT DESIGN

| Component-level design transforms structural p g
elements of software architecture into a
procedural description of software components

37

THINK THE RIGHT WAY

| To achieve a good design, people have to think g g , p p
the right way about how to conduct the design
activity

Katharine Whitehead

38

DESIGN PROCESS PRINCIPLES - 1
| The design process should not suffer from “tunnel g p

vision”
| The design should not reinvent the wheel
| The design should “minimize the intellectual”

distance between the software and the problem
as it exists in the real worldas it exists in the real world

39

DESIGN PROCESS PRINCIPLES - 2
| The design should exhibit uniformity and g y

integration
| The design should be assessed for quality as it is

b i t d t ft th f tbeing created, not after the fact
| The design should be reviewed to minimize

conceptual (semantic) errorsconceptual (semantic) errors

40

WHEN APPLYING THEM

| Plan for change, because it is expected
| Plan for failure, because no software system is

free of defects

How do we know if the design we have developed is
of high quality?

41

DESIGN PROCESS EVALUATION
G # 1GUIDE # 1
| The design must implement all of the explicit g p p

requirements contained in the analysis model,
and it must accommodate all of the implicit
requirements desired by the customerrequirements desired by the customer

42

DESIGN PROCESS EVALUATION
G # 2GUIDE # 2
| The design must be readable and understandable g

guide for those who generate code, write test
cases, and test the software

43

DESIGN PROCESS EVALUATION
G # 3GUIDE # 3
| The design should provide a complete picture of g p p p

the software, addressing the data, functional, and
behavioral domains from an implementation
perspectiveperspective

44

DESIGN
MODEL/REPRESENTATION

45

DESIGN MODEL PRINCIPLES - 1
| Separation of concernsp
| Modeling real-world objects
| Minimizing the interactions among cohesive

design components
| The design should be traceable to the analysis

modelmodel

46

DESIGN MODEL PRINCIPLES - 2
| The design should be structured to accommodate g

change
| The design should be structured to degrade

tl h b t d t t gently, even when aberrant data, events, or
operating conditions are encountered

| Design is not coding, coding is not design| Design is not coding, coding is not design

47

GUIDELINES FOR GOOD DESIGN MODEL
- 1
| A design should exhibit an architectural g

structure that
Has been created using recognizable design patterns
I d f t th t hibit d d i Is composed of components that exhibit good design
characteristics
Can be implemented in an evolutionary fashion,
f ili i i l i d ifacilitating implementation and testing

48

GUIDELINES FOR GOOD DESIGN MODEL
- 2
| A design should be modular; that is software g ;

should be logically partitioned into elements that
perform specific functions and sub-functions
Th d i h ld t i di ti t | The design should contain distinct
representations of data, architecture, interfaces,
and components (modules)

49

GUIDELINES FOR GOOD DESIGN MODEL
- 3
| A design should lead to data structures that are g

appropriate for the objects to be implemented
and are drawn from recognizable data patterns
A d i h ld l d t t th t hibit | A design should lead to components that exhibit
independent functional characteristics

50

GUIDELINES FOR GOOD DESIGN MODEL
- 4
| A design should lead to interfaces that reduce the g

complexity of connections between modules and
with external environment
A d i h ld b d i d i t bl | A design should be derived using a repeatable
method that is driven by information obtained
during software requirements analysis

51

QUESTIONS ANSWERED BY DESIGN
CCONCEPTS

| What criteria can be used to partition software p
into individual components?

| How is function or data structure detail
t d f t l t ti f separated from a conceptual representation of

software?
| What uniform criteria define the technical | What uniform criteria define the technical

quality of a software design?

52

ABSTRACTION

| Abstraction permits one to concentrate on a p
problem at some level of generalization without
regard to irrelevant low-level details
Ab t ti i f th f d t l th t | Abstraction is one of the fundamental ways that
we as humans cope with complexity

Grady Booch

53

LEVELS OF ABSTRACTION

| At the highest level of abstraction, a solution is g ,
stated in broad terms using the language of the
problem environment
At l l l f b t ti d l | At lower levels of abstraction, a more procedural
orientation is taken. Problem-oriented
terminology is coupled with implementation-
oriented terminology in an effort to state a
solution

| At the lowest level of abstraction the solution is | At the lowest level of abstraction, the solution is
stated in a manner that can be directly
implemented

54

TYPES OF ABSTRACTION

| Procedural abstraction
Named sequence of instructions that has a specific
and limited function
Example: Open doorExample: Open door

| Data abstraction
Named collection of data that describes a data objectj
Example: any object

| Control abstraction
I li l h i i h Implies a program control mechanism without
specifying internal details
Example: synchronization semaphore Variable

55

REFINEMENT - 1
| A program is developed by successively refining p g p y y g

levels of procedural detail
| A hierarchy is developed decomposing a

macroscopic statement of function in a step-wise macroscopic statement of function in a step wise
fashion until programming language statements
are reached

| Refinement is actually a process of elaboration| Refinement is actually a process of elaboration

56

REFINEMENT - 2
| There is a tendency to move immediately to full y y

detail, skipping the refinement steps. This leads
to errors and omissions and makes the design
much mode difficult to review Perform stepwise much mode difficult to review. Perform stepwise
refinement

| Abstraction and refinement are complementary
concepts

57

MODULARITY

| One of the oldest concepts in software designp g
| Software is divided into separately named and

addressable components, often called, modules,
th t i t t d t ti f bl that are integrated to satisfy problem
requirements

| Modularity is the single attribute of software | Modularity is the single attribute of software
that allows a program to be intellectually
manageable
D ’ d l i Th i li i f h | Don’t over modularize. The simplicity of each
module will be overshadowed by the complexity
of integration

58

g

QUALITY DESIGN CONCEPTSQ

59

INFORMATION HIDING - 1

|Modules should be specified and designed |Modules should be specified and designed
so that information (procedures and data)
contained within a module is inaccessible
to other modules that have no need for
such information

| IH means that effective modularity can be
achieved by defining a set of independent
modules that communicate with one modules that communicate with one
another only that information necessary
to achieve a software function

60

to achieve a software function

INFORMATION HIDING - 2
| Abstraction helps to define the procedural (or p p (

informational) entities that make up the software
| IH defines and enforces access constraints to both

d l d t il ithi d l d l l procedural detail within a module and any local
data structure used by the module

61

COHESION - 1
| Cohesion is the qualitative indication of the q

degree to which a module focuses on just one
thing
I th d h i i f th | In other words, cohesion is a measure of the
relative functional strength of a module

| A cohesive module performs one single task or is | A cohesive module performs one single task or is
focused on one thing

| Highly cohesive modules are better, however,
id h i i blmid-range cohesion is acceptable

| Low-end cohesion is very bad

62

COUPLING

|Coupling is a qualitative indication of the |Coupling is a qualitative indication of the
degree to which a module is connected to
other modules and to the outside world

| In other words, coupling is a measure of
interconnection among modules in a
software structure

|Loose coupling is better. Simple
i i i i d d d connectivity is easier to understand and

less prone to “ripple effect”

63

DESIGN METHODS

| Use a design method, which is most suitable for g ,
the problem at hand. Don’t just use the latest or
the most popular design method

| There are many structured design and object-| There are many structured design and object
oriented design methods to choose from

| Follow the design method’s representation
scheme It helps in understanding designscheme. It helps in understanding design

64

Programming and Programming and
Software QualitySoftware Quality

PROGRAMMING

| The act of programming, also known as coding, p g g, g,
produces the primary products – executables – of
a software development effort

| All prior activities culminate in their | All prior activities culminate in their
development

| Programming is done in a programming language

66

CODING DEFECTS - 1
| All four categories of defects are found in source g

code
Errors of commission
Errors of omissionErrors of omission
Errors of ambiguity and clarity
Errors of speed and capacity

| Errors of commission are the most common when | Errors of commission are the most common when
the code is underdevelopment

67

CODING DEFECTS - 2

|The most surprising aspect of coding |The most surprising aspect of coding
defects is that more than fifty (50) percent
of the serious bugs or errors found in the
source code did not truly originate in the
source code

|A majority of the so-called programming
errors are really due to the programmer
not understanding the design or a design not understanding the design or a design
not correctly interpreting a requirement

68

CODING DEFECTS - 3
| Software is one of the most difficult products in p

human history to visualize prior to having to
build it, although complex electronic circuits have
the same characteristicthe same characteristic

| Built-in syntax checkers and editors with modern
programming languages have the capacity to find
many “true” programming errors such as missed
parentheses or looping problems

| They also have the capacity to measure and | They also have the capacity to measure and
correct poor structure and excessive branching

69

CODING DEFECTS - 4
| The kinds of errors that are not easily found are y

deeper problems in algorithms or those
associated with misinterpretation of design
At l t fi h d d (500) i | At least five hundred (500) programming
languages are in use, and the characteristics of
the languages themselves interact with factors
such as human attention spans and capacities of
temporary memory

| This means that each language or family of | This means that each language, or family of
languages, tends to have common patterns of
defects but the patterns are not the same from

70

language-to-language

CODING DEFECTS - 6
| There is no solid empirical data that strongly-p g y

typed languages have lower defect rates than
weakly-typed languages, although there is no
counter evidence eithercounter evidence either

| Of course for all programming languages,
branching errors are endemic. That is, branching
to the wrong location for execution of the next
code segment

71

DEFECTS IN HIGH-LEVEL LANGUAGES -
1
|Many high-level languages, such as Ada |Many high level languages, such as Ada

and Modula, were designed to minimize
certain common kinds of errors, such as
mixing data types or looping incorrect
number of times

|Of course, typographical errors and
syntactical errors can still occur, but the
more troublesome errors ha e to do ith more troublesome errors have to do with
logic problems or incorrect algorithms

72

DEFECTS IN HIGH-LEVEL LANGUAGES -
2
| A common form of error with both non-procedural p

and procedural languages has to do with
retrieving, storing, and validating data
It ti h th t th d t i | It may sometimes happen that the wrong data is
requested

| Programming in any language is a complex | Programming in any language is a complex
intellectual challenge with a high probability of
making mistakes from time to time
A l i h i | Analogy with typos in a newspaper

73

DEFECTS IN LOW-LEVEL
LLANGUAGES

|Since low-level languages often |Since low level languages often
manipulate registers and require that
programmers setup their own loop
controls, common errors involve failure to
initialize registers or going through loops
th b f ti t ll ti the wrong number of times, not allocating
space for data and subroutines

|For eakl t ped languages mismatched |For weakly-typed languages, mismatched
data types are common errors

74

QUALITY PRACTICES FOR GENERAL-
PURPOSE PROGRAMMING - 1
| Use the highest-level programming language g p g g g g

possible
| Use integrated development environments
| Adopt a coding standard that prevents common

types of defects

75

QUALITY PRACTICES FOR GENERAL-
PURPOSE PROGRAMMING - 2
| Prototype user interfaces and high-risk yp g

components
| Define critical regions

76

USE THE HIGHEST-LEVEL
P L 1PROGRAMMING LANGUAGE - 1
| Code written in higher-level programming g p g g

languages is easier to read and maintain
| Any fool can write code that a computer can

d t d G d it d th t understand. Good programmers write code that
humans can understand

77

USE THE HIGHEST-LEVEL
P L 2PROGRAMMING LANGUAGE - 2
|Several practical factors influence the |Several practical factors influence the

selection of a programming language
Technology trends
Organizational informational technology
strategies
C i i i Customer restrictions on programming
language selection
Experience of the development teamExperience of the development team
Features of the programming language (e.g., to
interoperate with external systems)

78

USE THE HIGHEST-LEVEL
P L 3PROGRAMMING LANGUAGE - 3
| The complexity of software systems is growing p y y g g

quicker than our ability to develop software
solutions
F l d ti it f t l | For example, productivity of computer personnel
increased about 6% per year during the 1990s,
whereas the growth in NASA mission software is
about 25% per year

79

USE THE HIGHEST-LEVEL
P L 4PROGRAMMING LANGUAGE - 4
|Productivity is constant in terms of |Productivity is constant in terms of

program statement size. That is writing
ten lines of code in assembly language
requires as much work as writing ten
lines of code in C++, but the functionality
d l d i t li f C++ i h developed in ten lines of C++ is much
more than the ten lines of assembly
language codelanguage code

|We are shrinking the size of the programs
by using higher-level languages

80

by using higher level languages

USE THE HIGHEST-LEVEL
P L 5PROGRAMMING LANGUAGE - 5
| Fred Brooks has said that the advent of high-g

level programming languages had the greatest
impact on software productivity because there
was at least a factor of five improvement in was at least a factor of five improvement in
productivity

| The use of high-level programming languages
results in more reliable software

81

USE INTEGRATED DEVELOPMENT
EENVIRONMENTS
|Also known as IDEs, these suites include ,

an editor, a compiler, a make utility, a
profiler, and a debugger. Other tools may
also be includeda so e c e

|Recent IDEs include tools to model
software designs and implement graphical
user interfacesuser interfaces

|These tools, if used properly, can improve
the productivity 100%

|They also help identify many coding
defects, as they are being introduced in
the software

82

the software

ADOPT A CODING STANDARD TO
PREVENT COMMON TYPES OF
D 1DEFECTS - 1
| Coding standards are controversial because the g

choice among many candidate standards is
subjective and somewhat arbitrary
St d d t f l h th t | Standards are most useful when they support
fundamental programming principles

83

ADOPT A CODING STANDARD TO
PREVENT COMMON TYPES OF
D 2DEFECTS - 2
| So, it is easier to adopt a standard for handling , p g

exceptions, than for identifying the amount of
white-space to use for indentation
A i ti h ld l k it lf h th | An organization should always ask itself whether
a coding standard improves program
comprehension characteristics

84

QUALITY PRACTICES RELATED
TO PROGRAMMING

85

PRACTICES FOR INTERNAL
DOCUMENTATION - 1
| Specify the amount of white-space that should be p y p

used and where it should appear
Before and after loop statements and function
definitions
At each indentation level (two or four spaces have
been reported as improving comprehensibility of
programs)

| Physically offset code comments from code when
contained on the same line

86

PRACTICES FOR INTERNAL
D 2DOCUMENTATION - 2
| Use comments to explain each class, function, p , ,

and variable contained in source code.
(Comments can be from 10% and up)

Key interactions that a function has with other y
functions and global variables
Complex algorithms used by every function
Exception handlingException handling
Behavior and effect of iterative control flow
statements and interior block statements

87

PRACTICES FOR INTERNAL
D 3DOCUMENTATION - 3
| Provide working examples in the user g p

documentation or tutorial materials

88

PRACTICES FOR VARIABLE
D 1DEFINITION - 1
| Declare variables as specifically as possible and p y p

initialize them, preferably one declaration per
line

| Do not use similarly named variables within the | Do not use similarly named variables within the
same lexical scope

| Consistently, use clear and easily remembered
names for variables classes and functionsnames for variables, classes, and functions

89

PRACTICES FOR VARIABLE
D 2DEFINITION - 2
| Follow a uniform scheme when abbreviating g

name
| Do not use local declarations to hide declarations

t t at greater scope
| Never use a variable for more than one purpose

90

PRACTICES FOR CONTROL FLOW

| Do not assume a default behavior for multi-way y
branches

| Do not alter the value of an iteration variable
ithi lwithin a loop

| Use recursion, when applicable

91

PRACTICES FOR FUNCTIONS

| Explicitly define input and output formal p y p p
parameters

| Use assertions (e.g., pre- and post-conditions) to
if th d t f i t d verify the accuracy and correctness of input and

output formal parameters. The use of pre- and
post-conditions helps programmers detect defects
closer to their origin

92

PRACTICES FOR OPERATIONS

| Make all conversion of data explicit, especially p , p y
numeric data

| Do not use exact floating-point comparison
tioperations

| Avoid using operators in potentially ambiguous
situationssituations

93

PRACTICES FOR EXCEPTION HANDLING

| Process all exceptions so that personnel can more p p
easily detect their cause

| Log important system events, including
tiexceptions

94

PRACTICES FOR MAINTENANCE

| Isolate the use of nonstandard language g g
functions

| Isolate complex operations to individual functions

95

PRACTICES FOR OPERATIONAL

| Do not permit any compilation to produce p y p p
warnings

| Optimize software only after it works is complete,
d l if i d t hi f land only if required to achieve performance goals

96

PROTOTYPE USER INTERFACES AND
H R CHIGH-RISK COMPONENTS

|User interface prototyping helps identify |User interface prototyping helps identify
necessary features that software
engineers might otherwise overlook

|Prototyping can reduce the development
effort significantly

|Prototyping reduces development risk
because is allows programmers to explore

h d f hi i f d methods for achieving performance and
other high-risk requirements

97

DEFINE CRITICAL REGIONS

| A task that interrupts an interdependent p p
operational sequence before it is completed can
leave a program in a vulnerable state, resulting
in inconsistent and inaccurate results We need a in inconsistent and inaccurate results. We need a
critical regions to run such transactions

| Critical regions help prevent deadlocks

98

REFERENCES

| Software Engineering Quality Practices by g g Q y y
Ronald K. Kandt (Ch. 8)

| Software Quality: Analysis and Guidelines for
S b C JSuccess by Capers Jones

| Software Quality: Analysis and Guidelines for
Success by Capers JonesSuccess by Capers Jones

| Software Engineering: A Practitioner’s Approach
by Roger Pressman (Chapter 13)

| Software Engineering Quality Practices by
Ronald K. Kandt

99

