
SOFTWARE QUALITY ASSURANCE

Lecture 9Lecture 9

Instructor: Mr. Natash Ali Mian

Department of CS and ITDepartment of CS and IT
The University of Lahore

`

Switch off mobile phones during
lectures or put them into silent modelectures, or put them into silent mode

TERM PAPER

Finalize Group Members 26-Feb-2013
Finalize Topic 12-Mar-2013
Search Papers and Sort Selected (TODAY) 20-Mar-2013
Go Through the Abstract and Introduction of Selected Papers 27-Mar-2013

Submit a Summary and Comments on related papers 09-Apr-2013
Present Your Work till Today 09-Apr-2013
Submit Initial Draft 30-Apr-2013
Final Paper Submission 21-May-2013
Feedback on Final Submission + Plagiarism Report 28-May-2013
Final Presentation 4 June 2013Final Presentation 4-June-2013

Please note that Every Phase has Marks

CONTENTS

Programming and Software Quality

Programming and Programming and
Software QualitySoftware Quality

PROGRAMMING

The act of programming, also known as coding, p g g, g,
produces the primary products – executables – of
a software development effort
All prior activities culminate in their All prior activities culminate in their
development
Programming is done in a programming language

7

CODING DEFECTS - 1
All four categories of defects are found in source g
code

Errors of commission
Errors of omissionErrors of omission
Errors of ambiguity and clarity
Errors of speed and capacity

Errors of commission are the most common when Errors of commission are the most common when
the code is underdevelopment

8

CODING DEFECTS - 2

The most surprising aspect of coding The most surprising aspect of coding
defects is that more than fifty (50) percent
of the serious bugs or errors found in the
source code did not truly originate in the
source code
A majority of the so-called programming
errors are really due to the programmer
not understanding the design or a design not understanding the design or a design
not correctly interpreting a requirement

9

CODING DEFECTS - 3
Software is one of the most difficult products in p
human history to visualize prior to having to
build it, although complex electronic circuits have
the same characteristicthe same characteristic
Built-in syntax checkers and editors with modern
programming languages have the capacity to find
many “true” programming errors such as missed
parentheses or looping problems
They also have the capacity to measure and They also have the capacity to measure and
correct poor structure and excessive branching

10

CODING DEFECTS - 4
The kinds of errors that are not easily found are y
deeper problems in algorithms or those
associated with misinterpretation of design
At l t fi h d d (500) i At least five hundred (500) programming
languages are in use, and the characteristics of
the languages themselves interact with factors
such as human attention spans and capacities of
temporary memory
This means that each language or family of This means that each language, or family of
languages, tends to have common patterns of
defects but the patterns are not the same from

11

language-to-language

CODING DEFECTS - 6
There is no solid empirical data that strongly-p g y
typed languages have lower defect rates than
weakly-typed languages, although there is no
counter evidence eithercounter evidence either
Of course for all programming languages,
branching errors are endemic. That is, branching
to the wrong location for execution of the next
code segment

12

DEFECTS IN HIGH-LEVEL LANGUAGES -
1

Many high-level languages, such as Ada Many high level languages, such as Ada
and Modula, were designed to minimize
certain common kinds of errors, such as
mixing data types or looping incorrect
number of times
Of course, typographical errors and
syntactical errors can still occur, but the
more troublesome errors ha e to do ith more troublesome errors have to do with
logic problems or incorrect algorithms

13

DEFECTS IN HIGH-LEVEL LANGUAGES -
2

A common form of error with both non-procedural p
and procedural languages has to do with
retrieving, storing, and validating data
It ti h th t th d t i It may sometimes happen that the wrong data is
requested
Programming in any language is a complex Programming in any language is a complex
intellectual challenge with a high probability of
making mistakes from time to time
A l i h i Analogy with typos in a newspaper

14

DEFECTS IN LOW-LEVEL
LLANGUAGES

Since low-level languages often Since low level languages often
manipulate registers and require that
programmers setup their own loop
controls, common errors involve failure to
initialize registers or going through loops
th b f ti t ll ti the wrong number of times, not allocating
space for data and subroutines
For eakl t ped languages mismatched For weakly-typed languages, mismatched
data types are common errors

15

QUALITY PRACTICES FOR GENERAL-
PURPOSE PROGRAMMING - 1

Use the highest-level programming language g p g g g g
possible
Use integrated development environments
Adopt a coding standard that prevents common
types of defects

16

QUALITY PRACTICES FOR GENERAL-
PURPOSE PROGRAMMING - 2

Prototype user interfaces and high-risk yp g
components
Define critical regions

17

USE THE HIGHEST-LEVEL
P L 1PROGRAMMING LANGUAGE - 1

Code written in higher-level programming g p g g
languages is easier to read and maintain
Any fool can write code that a computer can

d t d G d it d th t understand. Good programmers write code that
humans can understand

18

USE THE HIGHEST-LEVEL
P L 2PROGRAMMING LANGUAGE - 2

Several practical factors influence the Several practical factors influence the
selection of a programming language

Technology trends
Organizational informational technology
strategies
C i i i Customer restrictions on programming
language selection
Experience of the development teamExperience of the development team
Features of the programming language (e.g., to
interoperate with external systems)

19

USE THE HIGHEST-LEVEL
P L 3PROGRAMMING LANGUAGE - 3

The complexity of software systems is growing p y y g g
quicker than our ability to develop software
solutions
F l d ti it f t l For example, productivity of computer personnel
increased about 6% per year during the 1990s,
whereas the growth in NASA mission software is
about 25% per year

20

USE THE HIGHEST-LEVEL
P L 4PROGRAMMING LANGUAGE - 4

Productivity is constant in terms of Productivity is constant in terms of
program statement size. That is writing
ten lines of code in assembly language
requires as much work as writing ten
lines of code in C++, but the functionality
d l d i t li f C++ i h developed in ten lines of C++ is much
more than the ten lines of assembly
language codelanguage code
We are shrinking the size of the programs
by using higher-level languages

21

by using higher level languages

USE THE HIGHEST-LEVEL
P L 5PROGRAMMING LANGUAGE - 5

Fred Brooks has said that the advent of high-g
level programming languages had the greatest
impact on software productivity because there
was at least a factor of five improvement in was at least a factor of five improvement in
productivity
The use of high-level programming languages
results in more reliable software

22

USE INTEGRATED DEVELOPMENT
EENVIRONMENTS

Also known as IDEs, these suites include ,
an editor, a compiler, a make utility, a
profiler, and a debugger. Other tools may
also be includeda so e c e
Recent IDEs include tools to model
software designs and implement graphical
user interfacesuser interfaces
These tools, if used properly, can improve
the productivity 100%
They also help identify many coding
defects, as they are being introduced in
the software

23

the software

ADOPT A CODING STANDARD TO PREVENT
COMMON TYPES OF DEFECTS - 1

Coding standards are controversial because the g
choice among many candidate standards is
subjective and somewhat arbitrary
St d d t f l h th t Standards are most useful when they support
fundamental programming principles

24

ADOPT A CODING STANDARD TO PREVENT
COMMON TYPES OF DEFECTS - 2

So, it is easier to adopt a standard for handling , p g
exceptions, than for identifying the amount of
white-space to use for indentation
A i ti h ld l k it lf h th An organization should always ask itself whether
a coding standard improves program
comprehension characteristics

25

QUALITY PRACTICES RELATED
TO PROGRAMMING

26

PRACTICES FOR INTERNAL
DOCUMENTATION - 1

Specify the amount of white-space that should be p y p
used and where it should appear

Before and after loop statements and function
definitions
At each indentation level (two or four spaces have
been reported as improving comprehensibility of
programs)

Physically offset code comments from code when
contained on the same line

27

PRACTICES FOR INTERNAL
D 2DOCUMENTATION - 2

Use comments to explain each class, function, p , ,
and variable contained in source code.
(Comments can be from 10% and up)

Key interactions that a function has with other y
functions and global variables
Complex algorithms used by every function
Exception handlingException handling
Behavior and effect of iterative control flow
statements and interior block statements

28

PRACTICES FOR INTERNAL
D 3DOCUMENTATION - 3

Provide working examples in the user g p
documentation or tutorial materials

29

PRACTICES FOR VARIABLE
D 1DEFINITION - 1

Declare variables as specifically as possible and p y p
initialize them, preferably one declaration per
line
Do not use similarly named variables within the Do not use similarly named variables within the
same lexical scope
Consistently, use clear and easily remembered
names for variables classes and functionsnames for variables, classes, and functions

30

PRACTICES FOR VARIABLE
D 2DEFINITION - 2

Follow a uniform scheme when abbreviating g
name
Do not use local declarations to hide declarations
t t at greater scope

Never use a variable for more than one purpose

31

PRACTICES FOR CONTROL FLOW

Do not assume a default behavior for multi-way y
branches
Do not alter the value of an iteration variable

ithi lwithin a loop
Use recursion, when applicable

32

PRACTICES FOR FUNCTIONS

Explicitly define input and output formal p y p p
parameters
Use assertions (e.g., pre- and post-conditions) to

if th d t f i t d verify the accuracy and correctness of input and
output formal parameters. The use of pre- and
post-conditions helps programmers detect defects
closer to their origin

33

PRACTICES FOR OPERATIONS

Make all conversion of data explicit, especially p , p y
numeric data
Do not use exact floating-point comparison

tioperations
Avoid using operators in potentially ambiguous
situationssituations

34

PRACTICES FOR EXCEPTION HANDLING

Process all exceptions so that personnel can more p p
easily detect their cause
Log important system events, including

tiexceptions

35

PRACTICES FOR MAINTENANCE

Isolate the use of nonstandard language g g
functions
Isolate complex operations to individual functions

36

PRACTICES FOR OPERATIONAL

Do not permit any compilation to produce p y p p
warnings
Optimize software only after it works is complete,

d l if i d t hi f land only if required to achieve performance goals

37

PROTOTYPE USER INTERFACES AND
H R CHIGH-RISK COMPONENTS

User interface prototyping helps identify User interface prototyping helps identify
necessary features that software
engineers might otherwise overlook
Prototyping can reduce the development
effort significantly
Prototyping reduces development risk
because is allows programmers to explore

h d f hi i f d methods for achieving performance and
other high-risk requirements

38

DEFINE CRITICAL REGIONS

A task that interrupts an interdependent p p
operational sequence before it is completed can
leave a program in a vulnerable state, resulting
in inconsistent and inaccurate results We need a in inconsistent and inaccurate results. We need a
critical regions to run such transactions
Critical regions help prevent deadlocks

39

REFERENCES

Software Engineering Quality Practices by g g Q y y
Ronald K. Kandt (Ch. 8)
Software Quality: Analysis and Guidelines for
S b C JSuccess by Capers Jones
Software Quality: Analysis and Guidelines for
Success by Capers JonesSuccess by Capers Jones
Software Engineering: A Practitioner’s Approach
by Roger Pressman (Chapter 13)
Software Engineering Quality Practices by
Ronald K. Kandt

40

